Polymer reports

References

```
1 Manson, J. A. and Sperling, L. H. 'Polymer Blends and
    Composites', Plenum Press, N.Y., 1976, Ch. }1
2 Ashton, J. E., Halpin, J. C. and Petit, P. H. 'Primer on Com-
    posite Materials: Analysis', Technomic, Stamford, Conn.,
    1969, p }7
3 Halpin, J. C. and Kardos, J. L. J. Appl. Phys. 1972, 43, 2235
4 Mead, W. T. and Porter, R. S. J. Appl. Phys. 1976, 47, 4278
5 Porter, R. S., Southern, J. H. and Weeks, N. Polym. Eng. Sci.
    1975, 15, 213
Chow, T. S. J. Appl. Phys. 1977, 48, 4072
7 Chow, T. S. J. Polym. Sci. (Polym. Phys. Edn.) 1978, 16, }95
8 Takayanagi, M., Harima, H. and Iwata, Y. Rep. Prog. Polym.
Phys. Jpn 1963, 6, 121
9 Crystal, R. C. and Southern, J. H. J. Polym. Sci. A2, 1971, 9, 1641
10 Hermans, J. J. Proc. R. Acad. Amsterdam 1967, B70, 1
11 Goodier, J. N. J. Appl. Mech. 1933, 1, 39
12 Edwards, R. H. J. Appl. Mech. 1951, 18, 19
13 Argon, A. S. Fibre Sci. Technol. 1976, 9, 265
14 Chow, T. S. J. Polym. Sci. (Polym. Phys. Edn.) 1978, 16, 967
15 Eshelby, J. D. Proc. R. Soc. London Ser. A. 1957, 241, 376
```


Appendix

The parameters for equation (6) are listed in the following:
$\alpha_{1}=4 \pi Q / 3-2(2 \pi-I) R$
$\alpha_{3}=4 \pi Q / 3+4(I-\pi) R$

$$
\begin{aligned}
& \beta_{1}=\left(4 \pi / 3-\frac{4 \pi-3 I}{1-\rho^{2}}\right) Q-4(I-2 \pi) R \\
& \beta_{3}=\left[4 \pi / 3-(4 \pi-3 I) \rho^{2} /\left(1-\rho^{2}\right)\right] Q+(4 \pi-I) R
\end{aligned}
$$

where

$$
Q=\frac{3}{8 \pi} \frac{1}{1-\nu_{m}}, R=\frac{1}{8 \pi} \frac{1-2 v_{m}}{1-v_{m}}
$$

and

$$
r= \begin{cases}\frac{2 \pi \rho}{\left(1-\rho^{2}\right)^{3 / 2}}\left[\cos ^{-1} \rho-\rho\left(1-\rho^{2}\right)^{1 / 2}\right] & \text { for } \rho<1, \\ \frac{2 \pi \rho}{\left(\rho^{2}-1\right)^{3 / 2}}\left[\rho\left(\rho^{2}-1\right)^{1 / 2}-\cosh ^{-1} \rho\right] & \text { for } \rho>1\end{cases}
$$

When $\rho \rightarrow 1$, we have

$$
\begin{aligned}
& \alpha_{1}=\alpha_{3}=\alpha=\frac{1}{3}\left(\frac{1+v_{m}}{1-v_{m}}\right) \\
& \beta_{1}=\beta_{3}=\beta=\frac{2}{15}\left(\frac{4-5 v_{m}}{1-v_{m}}\right)
\end{aligned}
$$

ERRATUM

'Proton spin-lattice relaxation in vinyl polymers and an application of a solvable model of polymer dynamics'

F. Heatley* and J. T. Bendler ${ }^{\dagger}$

There is an error in the definition of the relaxation coefficients in equation (3) of reference 1 , concerned with coupled proton spin-lattice relaxation in vinyl polymers. The equation defining the cross-relaxation coefficients $T_{A X}$ and $T_{X A}$ is in error by a factor of 2 , and should read

$$
\frac{1}{T_{A X}}=\frac{1}{2 T_{X A}}=K \frac{12 J\left(\omega_{A}+\omega_{X}\right)-2 J\left(\omega_{A}-\omega_{X}\right)}{R_{A X}^{6}}
$$

This error is solely a transcription error. Relaxation parameters reported in reference 1 were evaluated using the correct form.
Unfortunately, the incorrect expression was employed in a subsequent application of a jump model of polymer motion ${ }^{2}$. As a consequence of the correction above, calculated nuclear Overhauser enhancements given in Table III of reference 2 should be multiplied by 2 . The agreement with experiment is much improved. (Note also that the entry for the parameter N_{A} at $10^{\circ} \mathrm{C}$ in the fourteenth column of Table III has been incorrectly printed as -0.9 instead of -0.09 .)

References

1. Heatley, F. and Cox, M. K. Polymer 1977, 18, 225

2 Bendler, J. T. and Yaris, R. Macromolecules 1978, 11, 650

[^0]
[^0]: * Department of Chemistry, University of Manchester, Manchester, M13 9PL, UK
 \dagger General Electric, R and D Center, Schenectady, N. Y. 12301, USA

